
CGP3011M Game Engine Architectures

SAN12366949 Gary Sangwell 1

Gary Sangwell

SAN12366949

CGP3011M

Game Engine Architectures

Assessment 1

CGP3011M Game Engine Architectures

SAN12366949 Gary Sangwell 2

Table of Contents
Part A... 3

Introduction .. 3

Requirements .. 3

Self-contained Source, Altlog.txt .. 3

Functions, Variadic Arguments, Log Levels ... 4

Overhead, Release Builds.. 5

Useable Interface .. 5

Additional Features ... 5

Part B ... 6

Introduction .. 6

Requirements .. 6

Heatmap.. 6

Trajectory Mapping ... 7

Death Heatmap ... 7

Combined Mode ... 7

Play Mode ... 7

UI ... 8

Controls ... 8

Possible Extensions ... 8

Appendix ... 9

Part A... 9

Part B ... 12

CGP3011M Game Engine Architectures

SAN12366949 Gary Sangwell 3

Part A

Introduction
For the first part of the assignment, the task was to create an alternative logging system for the Q3A

Engine, with some new and potentially useful features. A list of requirements for the logging system

was given, and the solution presented here successfully implements all of the required features, as

well as some additional features that may prove useful.

Requirements
1. It should be implemented in two new files named “altlog.c” and “altlog.h”.

2. As a minimum, it should have functions to initialize and de-initialise the logging, and a

function analogous to Com_Printf() which can be called from any .c code file at any point.

3. The logging function should follow the C standard for passing variadic arguments (just like

Com_Printf).

4. Logged data should be stored in a text file “altlog.txt”.

5. There also should be an option to direct the logged data to the console rather than the file, if

needed.

6. There should be a facility to tag logged data in some way (eg “Debug Info”,

“Errors”,”Performance data”, etc), and to filter it at run time, so that the programmer can

switch off and on different tags. For example, we might only want to log “Performance Data”

on a specific test run of the game.

7. The programmer should be able to switch off all logging in such a way that programme

performance is not affected (for a release build).

8. You should give general consideration to computational overhead, and minimize the impact

of the logging system as much as possible.

9. This system will be used by other team members, so you should design a usable and clear

interface.

Self-contained Source, Altlog.txt
The first requirement given was to implement the solution in two new files, name “altlog.h” and

“altlog.c”. All of the code and functionality required for the logging system is present within these

files, as shown in appendix 4-5, and there are no dependencies on any of the Q3A source files. This

allows the system to be portable, and therefore easily moved to another game with minimal, if any,

changes.

The system logs all messages to a txt file named “altlog.txt”, which was the fourth requirement given

for the solution. A further extension to this solution that could prove valuable would be to allow the

initialise, log message and de-initialise functions to all take a log file name, rather than use an

internally hard-coded name. This would have allowed multiple different log files to be opened and

written to within the same program; for example, error messages could have been written to one

log, whilst performance messages were written to another. However, this was left out in order to

meet the requirement given.

CGP3011M Game Engine Architectures

SAN12366949 Gary Sangwell 4

Functions, Variadic Arguments, Log Levels
The second requirement was for 3 functions to be present at minimum; one for initialising the

logging system, one for de-initialising the logging system, and a third for logging messages,

analogous to the Com_Printf() function already available in Q3A. In this implementation, all of these

functions were implemented, along with additional functions to provide more functionality.

The initialise function opens the log file in append mode, appending any new log entries to the

existing file (if present), rather than over writing it. It also prints a message to the log file to show the

time the logging session was started; this is useful to help identify different logging sessions,

especially if multiple are appended to a single file. The decision to use append mode rather than

overwriting the log file was made to ensure that if the program was accidently re-run after a logging

session, the log data would not be deleted. If a programmer wishes to log into an empty file, the log

file can be manually deleted and the solution will automatically recreate it the next time it is ran.

The de-initialise function closes the log file, in which any store writes are flushed and written to the

file. The function for logging messages takes multiple parameters, including variadic arguments

following the C standard as Com_Printf() does, which was a third requirement for the logging

system. The signature for this function is shown in appendix 1; the first parameter takes the log level

to tag the message with, the second parameter allows a programmer to direct the log message to

the console, and the third parameter allows the user to pass in any number of arguments for

logging. The decision was made to use Variadic arguments, not only to meet the requirements given,

but also to provide greater functionality to a programmer.

The use of log levels allows a programmer to tag different log messages with different tags, including

the following: LOG_ERROR, LOG_DEBUG and LOG_PERFORMANCE. These tags are shown in the log

file, providing an easy way to identify which category a message belongs to when reviewing a log file

manually through a text editor. An example of this is shown in appendix 2. In addition to this, these

tags can be filtered at run time, so that only messages with a tag matching the set level are logged,

and the rest are discarded. This would be useful when different testers require different information

from log files; the messages can be filtered by simply changing one line of code, rather than

removing any unneeded log calls. When the logging system is first initialised, the log level is set via a

function parameter, and tags can be combined to allow multiple tags to be logged. An function also

exists to allow a programmer to change what level messages are written to the log file and console

window at run-time, and levels can again be combined together to allow more than one type of data

to be logged at once.

This requirement was implemented through the use of enumerations and bit values, which allow the

tags to be combined together, and therefore multiple tags can be logged at the same time. This

could have been achieved through the use of a switch statement and an integer as the log level, but

the decision was made to use an enumeration and bit values to make multiple tags possible, as well

as to make code written using the log system clearer; an enumeration name is much clearer to

understand than a simple integer.

CGP3011M Game Engine Architectures

SAN12366949 Gary Sangwell 5

Overhead, Release Builds
Another set of requirements for the logging system was to both minimise the impact the solution

had on the performance of Q3A, as well as to provide a method to completely turn off logging if

needed, for example when building release builds. This was achieved through the use of the _DEBUG

define, which is only defined if the solution is built in debug mode; this is used with the #if macro

within each function, and the compiler removes the code inside each function if not built in release

mode. It was originally considered to use a macro function to wrap the C function, but the choice

was made to use the #if macro instead to minimise the complexity of the solution, and to make the

interface more clear to any programmers using the solution. Whilst this solution still leaves the

function calls when built in release mode, any modern compiler should automatically optimise these

empty function calls out, resulting in no additional computational overhead.

Useable Interface
A clear and useable was the last requirement for the logging system, so that other team members

could easily use the system. This was achieved through the use of good coding standards, including

relevant function and parameter names. The function and parameter names chosen clearly indicate

both what the function does, as well as the data it is expecting. In addition to this, functions are

clearly commented in a templated format, detailing exactly what a function does, what it returns

and what parameters it expects. The solution also only exposes the minimal amount of functions

needed, in order to decrease complexity for programmers.

Additional Features
In addition to the given requirements, some extra features were added that should prove useful to a

programmer using the logging system. One extra feature implemented was to allow the user to flush

the pending writes to the log file, allowing writes to be made before the de-initialise function is

called. This is useful to avoid log data being lost if the program execution crashes before the log file

is closed. For example, this could be called once a frame if use within a game environment, resulting

in only a single frame of log data being lost if the program terminates before the writes were flushed

through closing the log file.

A second additional feature that was added was the use of time-stamps within the log messages;

every message that is logged is prefixed with the time the message was logged. This allows for a

programmer to view the exact time during the programs execution when a message was logged; this

could be useful when trying to debug errors within a game. This can also be seen in appendix 2.

A third additional feature that is provided is the use of colour when log messages are directed to the

console. The different levels of log messages are shown in different colours; for example, errors are

shown in red, whereas debug messages are shown in yellow. This can be seen in appendix 3. This

could prove useful to a programmer using the logging system, as it allows for different types of log

messages to be easily identified within the console window; for example, any errors that are logged

will be immediately apparent as they are clearly visible in red font.

CGP3011M Game Engine Architectures

SAN12366949 Gary Sangwell 6

Part B

Introduction
For the second part of the assignment, the task was to build a standalone tool that could visualise

log files generated from Q3A game-play. The tool could either read files generated from the logging

system in Part A, or files generated by the Q3A engine. A list of requirements for the tool was given,

including graphic visualisation of trajectories and heatmaps, as stated below. Most of the

requirements were implemented, along with some additional features.

Requirements
1. It should be a standalone tool – it should be able to read Q3A log files, or the log files your

wrote to in part A.

2. The log file(s) should be specified as command line parameters, with sensible defaults. You

do not need to build a file opening UI.

3. The tool should have a “heatmap” mode where a heatmap of player positions should be

displayed (https://en.wikipedia.org/wiki/Heat_map). The user should be able to explore the

heatmap by zooming and panning

4. There should be a trajectory visualisation mode that shows the trajectories players take

through the world.

a. The trajectory visualisation should be able to (on a mode switch) also visually

illustrate the speed of the player along the trajectory

b. The trajectory visualisation should be able to be shown on top of the heat map (i.e.

one, the other, or both)

c. Trajectories of different players should be visually distinct from each other.

5. For both modes, the user should be able to cycle through showing data for all players, player

1, player 2, player X, and back to all players.

6. There should be a sliding window feature that only shows the data for a section of the in-

game time, and that can be paused and played (with key presses) to move through in-game

time.

7. On-screen indication of the mode/state of the visualisation

8. The tool should function for game logs of at least 5 minutes of game play with at least 4

players. You should discuss this in your report.

9. The visualisation should be of a quality such that users can understand the activities of

players that are in the log files.

10. Documentation for how to control the visualisation.

Heatmap
One of the first requirements for this solution was the visualisation of player position through a

heatmap, which can be zoomed and panned around; this can be seen in appendix 6. In order to

achieve this visualisation, the player position data collected from the Q3E log files generated in part

A was used. As this data was very dense, early attempts resulted in a poor heatmap; due to the high

precision of the stored position, positions were often only ever visited once. This was solved by

down sampling the data, and instead using block areas and summing the total points inside the

block. Whilst this resulted in a blockier heatmap, it meant that colour could be used to much better

effect as a visual aid for player position.

CGP3011M Game Engine Architectures

SAN12366949 Gary Sangwell 7

Trajectory Mapping
Another requirement for the game analytic tool was visualisation of player trajectory, including

visualisation of player speed. This was successfully implemented through the use of the logged

player positions. The OpenGL line strip drawing mode was used in order to draw lines from the given

positions, as can been seen in Appendix 7-10. The visualisation can cycle through the different

players, the same as the heatmap mode, as well as show all of the player’s trajectories on a single

screen. This is shown in Appendix 7-11. The visualisation of player speed can also be toggled on and

off, and is achieved through the use of line colour intensity; the colour is more intense in areas

players were travelling fast, and less pronounced in areas the player was travelling slowing.

Appendix 12-16 shows how this is visualised. One limitation of the current method of visualising

player trajectory is the line jumps, shown as long straight lines, in which a player dies and then

moves to a new spawn point. This could have been solved by filtering for player health, and omitting

drawing any positions where the player was not alive.

Death Heatmap
In addition to the player position heatmap, a death heatmap mode was also created in order to

visualise how player deaths were distributed throughout the map. This was implemented for all 4

players, as well as a combined map that shows the distribution of all player deaths within the game

match; this is shown in Appendix 17-21. This feature was added to provide a user with a way of

visualising player deaths from game data, which could be useful when analysing game play tactics.

This was implemented by checking the player’s health in the logged data, and making a note of their

position as soon as their health dropped below 0. These points were then drawn onto the screen as

translucent squares, which when overlaid provide a stronger colour. Which quite a primitive method

of drawing heat maps, this method worked well enough to show the distribution of player deaths

throughout the map.

Combined Mode
One of the requirements given was for the tool to be able to overlay player trajectory on top of the

heatmap. This mode was implemented but using the death heatmap, rather than the positional

heatmap. This decision was made as the trajectory map was almost unnoticeable when overlayed

onto the positional heatmap. In addition to this, the combined death and trajectory maps allow a

user to see how players have moved about the map, at the same time as seeing where their deaths

occurred, which could be useful for many types of game play analysis. This was achieved by first

drawing the death map, and then drawing the trajectory map over the top of it. This mode was also

implemented for all 4 players, as well as a combined screen showing all the players combined deaths

and trajectories, as can be seen in Appendix 22-26.

Play Mode
The sixth requirement given for the game analytic tool was a sliding window feature that allows a

section of the game play data to be selected and played. This was almost fully implemented, and is

available in both Death Map mode as well as Player Trajectory mode. The player can adjust the

speed of the playback through the use of keyboard keys, as well as the window size and position.

Playback is only played when the user is holding a keyboard key. Different players can be cycled

through during playback, meaning the user can quickly switch between different player data and the

CGP3011M Game Engine Architectures

SAN12366949 Gary Sangwell 8

combined screen if needed. Appendix 27-28 show this mode being used in both the Trajectory and

Death Heatmap modes.

UI
An onscreen UI in the top left corner shows the current mode the visualisation tool is current in, as

well as what player data is being shown on screen. In addition, when in play mode, one extra feature

added is the display of additional information, such as current game time, playback speed, start and

end times, in the top right. This UI provides the user with additional information about the

visualisation, and helps the user control the tool more easily.

Controls
Zoom: Mouse scroll wheel.

Panning: Hold the middle mouse button + mouse movement.

Mode selection: Keyboard keys 1 – 4.

Speed visualisation: Keyboard key 0.

Player cycling: Left or right mouse button.

Enable playback: P key.

Play playback mode: Hold enter/return key.

Adjust playback speed: Pageup / Pagedown keys.

Adjust playback window: Up and down keys.

Possible Extensions
One additional feature that could be implemented to provide further features to users would be

visualisation of player kills. Whilst player deaths can be visualised through the death map mode, it is

hard to determine which player killed whom. By logging player kills as well, further information

could be portrayed to the user. This would be especially useful when using the tool to analyse game

play as a team, and for visualising exactly when, where and by whom a player was killed.

Another feature that could have been implemented would be visualisation of player pickups. This

would allow the user to visualise how the player travelled through the map, what pickups they

picked up and how this led to interactions with other players. This again could be useful for analysing

game play, as it would allow for the user to see exactly where and when a player picked up what

pickup.

CGP3011M Game Engine Architectures

SAN12366949 Gary Sangwell 9

Appendix

Part A

Appendix 1: The signature for the logMessage() function, showing the parameters the function takes.

Appendix 2: Messages written to the log file are automatically prefixed with their tag and the time the

message was logged, useful when reviewing log files at a later date.

Appendix 3: Messages directed to the console are colour coded for easy identification.

CGP3011M Game Engine Architectures

SAN12366949 Gary Sangwell 10

Appendix 4: altlog.h header file.

CGP3011M Game Engine Architectures

SAN12366949 Gary Sangwell 11

Appendix 5: altlog.c header file.

CGP3011M Game Engine Architectures

SAN12366949 Gary Sangwell 12

Part B

Appendix 6: Position Heatmap mode, showing a coloured heatmap of player position throughout the

game.

Appendix 7: Trajectory map for player 1.

CGP3011M Game Engine Architectures

SAN12366949 Gary Sangwell 13

Appendix 8: Trajectory map for player 2.

Appendix 9: Trajectory map for player 3.

CGP3011M Game Engine Architectures

SAN12366949 Gary Sangwell 14

Appendix 10: Trajectory map for player 4.

Appendix 11: Combined trajectory map for all players.

CGP3011M Game Engine Architectures

SAN12366949 Gary Sangwell 15

Appendix 12: Trajectory map showing speed through colour intensity for player 1.

Appendix 13: Trajectory map showing speed through colour intensity for player 2.

CGP3011M Game Engine Architectures

SAN12366949 Gary Sangwell 16

Appendix 14: Trajectory map showing speed through colour intensity for player 3.

Appendix 15: Trajectory map showing speed through colour intensity for player 4.

CGP3011M Game Engine Architectures

SAN12366949 Gary Sangwell 17

Appendix 16: Trajectory map showing speed through colour intensity for all players

Appendix 17: Death heatmap for player 1.

CGP3011M Game Engine Architectures

SAN12366949 Gary Sangwell 18

Appendix 18: Death heatmap for player 2.

Appendix 19: Death heatmap for player 3.

CGP3011M Game Engine Architectures

SAN12366949 Gary Sangwell 19

Appendix 20: Death heatmap for player 4.

Appendix 21: Combined death heatmap for all players.

CGP3011M Game Engine Architectures

SAN12366949 Gary Sangwell 20

Appendix 22: Combined mode for player 1.

Appendix 23: Combined mode for player 2.

CGP3011M Game Engine Architectures

SAN12366949 Gary Sangwell 21

Appendix 24: Combined mode for player 3.

Appendix 25: Combined mode for player 4.

CGP3011M Game Engine Architectures

SAN12366949 Gary Sangwell 22

Appendix 26: Combined mode for all players.

Appendix 27: An example of using playback mode to follow the trajectory of player 4.

CGP3011M Game Engine Architectures

SAN12366949 Gary Sangwell 23

Appendix 28: An example of using playback mode to see how player deaths progressed through the

game.

